В чем отличие блока питания от драйвера для светодиодов: теория и практика, всё что нужно знать. Правильное подключение светодиодов Обзор известных моделей

Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

Прежде всего, рассмотрим различие стандарного блока питания и драйвера для светодиодов . Для начала нужно определиться - что такое блок питания? В общем случае это - источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно - для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Другими словами - это тоже блок питания. Драйвер - это лишь маркетинговое обозначение - дабы избежать путаницы. До появления светодиодов источники тока - а им и является драйвер, не имели широкого распространения. Но вот появился сверхяркий светодиод - и разработка источников тока пошла семимильными шагами. А чтобы не путаться - их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания - это источник напряжения (constant voltage), Драйвер - источник тока (constant current). Нагрузка - то, что мы подключаем к блоку питания или драйверу.

Блок питания

Большинство электроприборов и компонентов электроники требуют для своей работы источник напряжения. Им является обычная электрическая сеть, которая присутствует в любой квартире в виде розетки. Всем известно словосочетание "220 вольт". Как видите - ни слова о токе. Это означает, что если прибор рассчитан на работу от сети 220 В, то вам неважно - сколько тока он потребляет. Лишь бы было 220 - а ток он возьмет сам - столько, сколько ему нужно. К примеру, обычный электрический чайник мощностью 2 кВт (2 000 Вт), включенный в сеть 220 в, потребляет следующий ток: 2 000 / 220 = 9 ампер. Довольно много, учитывая, что большинство обычных электрических удлинителей рассчитано на 10 ампер. В этом причина частого срабатывания защиты (автомата) при включении чайников в розетку через удлинитель, в который и так вставлено много приборов - компьютер, например. И хорошо, если защита сработает, в противном случае удлинитель может просто расплавиться. И так - любой прибор, рассчитанный на включение в розетку - зная, какова его мощность, можно вычислить потребляемый ток.
Но большинство бытовых устройств, таких как телевизор, DVD-проигрыватель, компьютер, нуждаются в понижении сетевого напряжения с 220 В до нужного им уровня - например, 12 вольт. Блок питания - это как раз то устройство, которое занимается таким понижением.
Понизить напряжение сети можно разными способами. Самые распостраненные блоки питания - трансформаторный и импульсный.

Блок питания на основе трансформатора

В основе такого блока питания лежит большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство - простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус - КПД и габариты. Чем больше мощность блока питания - тем он тяжелее. Часть энергии расходуется на "гудение" и нагрев:) Кроме того, в самом трансформаторе теряется часть энергии. Другими словами - просто, надежно, но имеет большой вес и много потребляет - КПД на уровне 50-70%. Имеет важный неотъемлемый плюс - гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания - током вас не стукнет:) Еще один несомненный плюс - блок питания может быть включен в сеть без нагрузки - это ему не повредит.
Но давайте посмотрим, что будет, если перегрузить такой блок питания .
Имеется: трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А.



Подключим вторую лампочку последовательно к первой, вот так:



Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же - 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Теперь изменим условия - подключим лампочки параллельно:



В итоге напряжение на каждой лампе будет одинаковое - 12 вольт, а вот тока они возьмут каждая по 0,42 А. То есть ток в цепи возрастет в два раза. Учитывая, что блок у нас мощностью 10 Вт - мало ему уже не покажется - при параллельном включении мощность нагрузки, то есть лампочек, суммируется. Если мы еще и третью подключим - то блок питания начнет дико греться и в конце концов сгорит, возможно, прихватив с собой вашу квартиру. А все это потому, что он не умеет ограничивать ток. Поэтому очень важно правильно рассчитать нагрузку на блок питания. Конечно, блоки посложнее содержат защиту от перегрузки и автоматически отключаются. Но рассчитывать на это не стоит - защита, бывает, тоже не срабатывает.

Импульсный блок питания

Самый простой и яркий представитель - китайский блок питания для галогеновых ламп 12 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока - 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока тоже не на высоте - порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе - для ноутбуков, принтеров и т.п. Итак, основное достоинство - небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток - тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки:) Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах - подсчитайте допустимую нагрузку на каждый трансформатор.
Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт - лучше не вешайте на него больше, чем 100 Вт нагрузки. И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки . Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу - обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше - устройства сами решают - сколько тока им нужно.

Драйвер

В общем случае драйвер - это источник тока для светодиодов . Для него обычно не бывает параметра "выходное напряжение". Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение - делим мощность в ваттах на ток в амперах.
На практике это означает следующее. Допустим, параметры драйвера следующие: ток - 300 миллиампер, мощность - 3 ватта. Делим 3 на 0,3 - получаем 10 вольт. Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым - на выходе будет 6 вольт 300 мА, подключим третий - 9 вольт 300 мА. Если же мы подключим светодиоды параллельно - то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА - они будут получать только 300 мА.
Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан - как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество - 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают - можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три - вполне возможно, что защита сработает и диоды либо не включатся либо будут мигать, сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки - этим они сильно отличаются от обычного источника напряжения.

Итак, разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление. Как это сделать - подробно описано в статье "Подключение светодиодов в авто"
Недостаток - низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема.

Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Микросхема LM317

Это следующий представитель семейства простейших драйверов для светодиодов . Подробности - в вышеупомянутой статье о светодиодах в авто. Недостаток - низкий КПД, требуется первичный источник питания. Преимущество - надежность, простота схемы.

Драйвер на микросхеме типа HV9910

Данный тип драйверов получил изрядную популярность благодаря простоте схемы, дешевизне комплектующих и небольших габаритах.
Преимущество - универсальность, доступность. Недостаток - требует квалификации и осторожности при сборке. Отсутствует гальваническая развязка с сетью 220 В. Высокие импульсные помехи в сеть. Низкий коэффициент мощности.

Драйвер с низковольтным входом

В эту категорию входят драйверы, рассчитанные на подключение к первичному источнику напряжения - блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество - небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток - требуется первичный источник напряжения.

Сетевой драйвер

Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов. Преимущество - высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток - высокая стоимость, труднодоступны для приобретения. Могут быть как в корпусе, так и без корпуса. Последние обычно применяют в составе ламп или других источников света.

Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды , совершают типичную ошибку. Сначала приобретаются сами СИД , затем под них подбирается драйвер . Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову - как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов - а драйвера только на 9 есть. И приходится ломать голову - как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт. А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт "потянет" 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так:

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА? Тогда придется использовать четное количество светодиодов , включая их по два параллельно.

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов - 350 мА. Это не так, 350 мА - это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения - ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток - тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер - это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями:)

Юрий Рубан, ООО "Рубикон", 2010 г .

На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • U LED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье . А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами.
Подключение мощных светодиодов и нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • I драйвера - ток драйвера по паспорту, А;
  • I LED - номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в .

Смешанное включение

Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.

Кстати, именно так устроена каждая светодиодная лента.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых . Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Ещё раз о трёх важных моментах

  1. Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы. Поэтому лучшим источником питания является светодиодный драйвер, при подключении к которому через светодиод всегда будет протекать постоянный ток нужной величины.
  2. Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока. Его значение необходимо знать для того, чтобы правильно вычислить сопротивление резистора, если светодиод будет работать от обычного БП.
  3. Для подключения мощных светодиодов важно не только надёжное электропитание, но и качественная система охлаждения. Установка на радиатор светодиодов с мощностью потребления более 0,5 Вт станет залогом их стабильной и продолжительной работы.

Читайте так же

Рассмотрены основные требования к источникам питания для светодиодных светильников, как самых оптимальных с точки зрения эффективности, надежности, экологии. Рассмотрены требования к входному току и возможные пути удовлетворения требований ГОСТ. Рассмотрены требования к выходным параметрам с учетом специфики нагрузки. Предложена топология преобразователя, удовлетворяющая всем рассмотренным требованиям с минимальными материальными затратами.

Замечено, что повышение благосостояния любой цивилизации приводит к увеличению количества потребляемой энергии в разных ее формах. Так было всегда, с самых первобытных племен и по настоящее время, и нет никаких оснований сомневаться в том, что так будет продолжаться и дальше, по крайней мере, в ближайшем будущем. Общий рост потребления энергии распространяется и на электрическую энергию, как на самый удобный вид энергии с точки зрения производства, использования и доставки потребителю, не говоря уже об экологии в местах ее использования. При увеличении потребления сразу же возникают проблемы, связанные с доставкой электроэнергии потребителю. Ограниченная пропускная способность существующих электрических сетей вынуждает искать пути для повышения эффективности передачи и использования электрической энергии.

Известно, что в жилых и непроизводственных зданиях, составляющих львиную долю потребителей, значительная часть от всей потребляемой электроэнергии (около 50%) расходуется на освещение. Поэтому повышение эффективности светильников существенно влияет на общие потери в проводах и на пропускную способность сети. Сравнение характеристик разных типов современных светильников (табл. 1) показывает, что так называемая «лампочка Ильича» – это светильник ХХ века, уже ушедшего в историю. Новый, ХХI век требует применения новых, эффективных решений.


Как видно из таблицы 1, замена традиционных ламп накаливания на люминесцентные лампы и современные светодиоды может сократить затраты энергии на освещение в 4…5 раз. Но уменьшится ли при этом нагрузка на электрическую сеть?

На рисунке 1 представлены осциллограммы тока потребления различных люминесцентных ламп (1а – лампа с пускорегулирующим устройством в цоколе без дросселя, 1б, 1в – лампы с дросселем). Из рисунка видно, что все люминесцентные лампы имеют низкий коэффициент мощности: без дросселя – за счет больших гармонических искажений тока, с дросселем – за счет огромного сдвига по фазе. В результате при равной яркости свечения люминесцентные лампы потребляют значительно меньшую активную мощность, но создают нагрузку на сеть даже большую, чем лампа накаливания равной яркости. Конечно, это позволяет экономить топливо, сжигаемое в печах электростанций, но совершенно не решает проблему доставки электроэнергии потребителю. В результате, в конечном счете все окажутся в убытке: владельцы электрических сетей (при максимальной нагрузке, которую могут выдержать сети, последние будут в состоянии передавать в 2…4 раза меньше активной мощности и, соответственно, приносить меньший доход), производители электроэнергии (генераторы электростанций при том же самом максимально допустимом токе обмоток генераторов будут вырабатывать меньшую полезную мощность) и, в конечном счете, потребители электроэнергии (совершив дополнительные затраты на установку экономичных светильников, потребители не смогут долго радоваться снижению затрат на освещение – электрические компании быстро отреагируют на снижение своих доходов и дружно откликнутся повышением тарифов). Чтобы повысить эффективность доставки электроэнергии, необходимо исключить бесполезный холостой пробег тока и передавать по проводам только активную мощность. Для решения этой задачи при импульсном потреблении тока, а также при ярко выраженном нелинейном или реактивном характере нагрузки необходимо применение одного из множества разновидностей корректоров коэффициента мощности (ККМ). Поскольку ККМ практически невозможно уместить в цоколе от лампы накаливания, простая замена лампы накаливания на более дорогую энергосберегающую люминесцентную лампу с таким же цоколем сократит на некоторое время расходы на освещение (при этом по причинам, изложенным выше, вряд ли дополнительные затраты успеют окупиться), но нисколько не убавит токовую нагрузку на сеть. Кроме того, поскольку сама люминесцентная лампа – вещь довольно громоздкая, да к тому же хрупкая и наполнена ядовитыми парами ртути, становится очевидным преимущество светодиодных светильников, лишенных указанных выше недостатков.

Особенности физических свойств светодиодов определяют специфические требования к источникам питания для светодиодной техники. Кроме того, чтобы действительно уменьшить нагрузку на электрическую сеть, то есть обеспечить высокий коэффициент мощности, источники должны соответствовать определенным требованиям по величине гармоник входного тока.

Проблема низкого коэффициента мощности существует столько же, сколько существуют электрические сети переменного тока. Повышающие и понижающие трансформаторы, электродвигатели переменного тока, включенные в большом количестве в электрическую сеть, создают значительную реактивную составляющую тока, в результате чего при довольно большом токе в проводах полезная мощность составляет малую часть от того, что можно было бы получить при чисто активной нагрузке. Действительно, при синусоидальном напряжении в сети в случае активной нагрузки ток в сети пропорционален напряжению:

Полезная мощность при этом составляет:

Коэффициент мощности, определяемый как отношение полезной мощности к произведению среднеквадратичных значений тока и напряжения, в данном случае равен:

При наличии реактивной составляющей, вызванной индуктивным характером нагрузки, ток отстает по фазе от напряжения:

Полезная мощность и коэффициент мощности при этом равны соответственно:


Итак, при синусоидальном токе коэффициент мощности равен пресловутому «косинусу фи», с которым должен быть хорошо знаком каждый, кто хорошо учился в средней школе. Однако отождествлять эти два понятия нельзя, поскольку коэффициент мощности может отличаться от 100% не только из-за сдвига по фазе между током и напряжением, но и из-за больших гармонических искажений тока. Если посмотреть с помощью осциллографа форму напряжения в любой электрической розетке, то сейчас никого уже не удивляет видимая невооруженным глазом особенность – верхушка синуса как бы срезана. Это объясняется большим распространением источников питания для персональных компьютеров, телевизоров и прочей бытовой техники, содержащих выпрямитель с накопительным конденсатором на своем входе и не содержащих при этом ККМ. Такие источники потребляют ток короткими импульсами в момент достижения сетевым напряжением своего амплитудного значения. В остальную часть периода сети потребления тока нет. Естественно, пиковое и среднеквадратичное значения тока в сети оказываются при этом значительно выше, чем в случае потребления в течение всего периода.

Для наглядности рассмотрим аппроксимацию тока потребления таких устройств в виде короткого прямоугольного импульса (рис. 2), точно совпадающего по фазе с напряжением сети, и будем предполагать, что коэффициент заполнения γ , то есть отношение длительности импульса к периоду его следования (в нашем случае – к половине периода сетевого напряжения) намного меньше единицы:

Поскольку импульс короткий и совпадает по времени с верхушкой синусоиды, мгновенное значение напряжения сети в течение всего импульса можно считать неизменным и равным амплитудному значению. При данном предположении потребляемая мощность и среднеквадратичное значение тока равны соответственно:

Коэффициент мощности при этом равен:

Нетрудно убедиться, что, например, при коэффициенте заполнения 1/8 коэффициент мощности уже равен 0,5 и будет тем меньше, чем меньше относительная длительность импульса. Если со сдвигом по фазе метод борьбы давно известен и везде применяется – включение в сеть конденсатора соответствующей емкости создает равную по величине и противоположную по знаку реактивную составляющую, которая компенсирует действие индуктивной нагрузки и уменьшает сдвиг по фазе до нуля, то с импульсным потреблением тока должен бороться сам потребитель, скомпенсировать его параллельным включением каких-либо дополнительных устройств нельзя. По своему действию на сеть импульсная нагрузка значительно хуже индуктивной, так как лишает сети переменного тока очевидного преимущества – отсутствия потерь в нулевом проводе. Если при сбалансированной нагрузке в трехфазной сети токи отстают по фазе от напряжения на один и тот же угол, они все равно взаимно компенсируются, и ток в нулевом проводе, равен нулю, потери выделяются только в фазных проводах, то при импульсном потреблении картина совсем иная. Импульсы тока потребления в каждой фазе не пересекаются по времени с импульсами в других фазах, и никакой взаимной компенсации токов в нулевом проводе не происходит. Напротив, в нулевом проводе складываются потери от тока каждой фазы, и его уже нельзя делать тонким. Напротив, при такой нагрузке его следует делать более мощным, чем фазные провода, потери в трехфазных сетях при этом удваиваются, а о передаче электроэнергии на большие расстояния с помощью трехпроводных линий электропередач без нулевого провода вообще не может быть и речи.

В нашей стране только в последнее время становится заметным влияние импульсного потребления и вызванные им неудобства. Значительно заметно это будет в ближайшем будущем в связи с централизованно организованным переходом от ламп накаливания к энергосберегающим лампам. Немногие захотят добровольно приобрести лампу, в 10…20 раз более дорогую, про которую известно, что она потребляет в 4…5 раз меньше электроэнергии (что похоже на правду и привлекает покупателя), и про которую говорят, что она прослужит во столько же раз дольше по сравнению с лампой накаливания, во сколько раз она дороже (в чем воспитанный нашей рекламой покупатель имеет полное право сомневаться). Гораздо охотнее будут раскупаться дешевые китайские лампы без ККМ, наводнившие наш рынок, и по мере дальнейшего введения запретов на производство ламп накаливания есть все основания ожидать, что мы в полной мере увидим все прелести импульсного потребления.

В более развитых странах с этой проблемой столкнулись несколько раньше, особенно остро она возникла в США, где стандартная сеть имеет напряжение 110 В. В Европе давно уже действуют нормы IEC 555-2 и множество произведенных от него стандартов, регламентирующих величину гармоник входного тока для устройств, питающихся от сети переменного тока. В России соответствующий стандарт ГОСТ Р 51317.3.2, содержащий аутентичный текст международного стандарта МЭК 61000‑3‑2‑(1995‑03), введен в действие 24 декабря 1999 г. В соответствии с этим стандартом все потребители до 16 А на фазу разделены на 4 класса со своими нормами на величину гармоник входного тока (по 40-ю гармонику включительно). К классу B относится портативное оборудование, к классу C относятся осветительное оборудование. Остальное оборудование разделено между классами A и D, одним из критериев деления является форма входного тока. Если форма тока укладывается в определенный стандартом шаблон в течение более 95% времени, то оборудование относится к классу D с более жесткими нормами, в котором допустимая величина гармоник входного тока зависит от входной мощности. Класс А устанавливает нормы на абсолютную величину гармоник входного тока независимо от входной мощности.

Для осветительного оборудования (класс С) установлены нормы на относительную величину гармоник входного тока. В соответствии со стандартом, вторая гармоника входного тока должна быть не более 2% от величины первой гармоники, третья – не более (30 PF )%, где PF – коэффициент мощности изделия, пятая – 10%, седьмая – 7%, девятая –5%. Нормы на величину нечетных гармоник с 11 по 39 включительно установлены на уровне 3% от величины первой гармоники. Чтобы соответствовать требованиям стандарта, в состав оборудования включают дополнительный функциональный узел, называемый корректором коэффициента мощности (ККМ). Поскольку основная масса единиц осветительного оборудования на основе светодиодов не будет потреблять более 100 Вт, источник питания для светодиодов должен быть достаточно дешевый, что накладывает довольно жесткие ограничения на стоимость ККМ. Фактически, форма входного тока у источника питания для светодиодов может очень сильно отличаться от синусоидальной, главное, чтобы гармоники входного тока соответствовали требованиям ГОСТ, а стоимость самого ККМ была минимальной.

Наиболее популярным видом ККМ в маломощных источниках питания являются пассивные ККМ, основным преимуществом которых является их простота и низкая стоимость. В качестве примера пассивного ККМ на рисунке 3 представлена наиболее популярная диодно-кондесаторная схема.


Главный принцип действия пассивных корректоров – «растянуть» форму тока за пределы установленного в стандарте шаблона, таким образом, переводя преобразователь из класса D в класс A с менее жесткими нормами на величину гармоник входного тока (рисунок 4).


Как видно из рис. 4, пассивный ККМ обеспечивает форму тока, не укладывающуюся в шаблон для класса D, следовательно, оборудование может быть отнесено к классу А. Поскольку нормы в классе A установлены в абсолютных величинах независимо от величины входной мощности (нормы класса А соответствуют нормам класса D для мощности 600 Вт), такой тип корректоров вполне приемлем для маломощных преобразователей. Осветительное оборудование, однако, относится к классу C, в котором норма на гармоники входного тока установлена в относительных единицах по отношению к величине основной гармоники. Представленная на рисунке 3 форма тока значительно превышает нормы, установленные для класса C. По этой причине дешевые пассивные корректоры коэффициента мощности не могут быть использованы в осветительной аппаратуре. Для удовлетворения требований стандарта по гармоникам входного тока в нашем случае необходимо применение активного ККМ.

Классический ККМ в виде отдельного узла или отдельного модуля выполняется по схеме повышающего преобразователя (рис.5). Данный ККМ позволяет удовлетворить самые жесткие требования стандарта, но его применение существенно повышает стоимость изделия, что особенно заметно, если мощность источника не превышает 100…200 Вт, т.е. практически не подходят для подавляющего большинства светильников.

В поисках путей удешевления ККМ в 90-х годах прошлого века появились публикации, в которых предлагалось объединить функции силовых ключей ККМ и последующего преобразователя в одном силовом ключе (рис. 6), дополнив схему диодами и переведя ККМ и преобразователь в режим разрывных токов (так называемое «новое семейство»). Экономия одного ключа и его схемы управления достигается за счет повышенных токов и напряжения на основных силовых элементах схемы. Особенно неприемлемой оказалась зависимость напряжения на высоковольтном накопительном конденсаторе от изменения мощности нагрузки. Из-за этих недостатков «новое семейство» не получило практического применения.

В последнее время появились также публикации о резонансных преобразователях с ККМ с двумя накопительными конденсаторами и несколькими магнитосвязанными обмотками трансдросселя, в которых ток перетекает резонансным образом из одной накопительной емкости в другую и затем, через выходную обмотку трансдросселя, в нагрузку. В этих преобразователях используется один ключ, а входной дроссель ККМ и изолирующий трансформатор объединены на общем сердечнике в один моточный компонент. Данная топология из-за множества магнитных связей практически не поддается аналитическому описанию, попытки публикаций грешат множеством неточностей. Из публикаций видно, что преобразователь работает, и видно, что начальные предположения при анализе приводят к противоречию работы преобразователя и результатам анализа, вытекающих из сделанных предположений. Применение режима разрывных токов и резонансного принципа работы подразумевает повышенные требования по току к накопительным конденсаторам, однако, если производитель правильно подберет компоненты и сумеет обеспечить высокую повторяемость при серийном производстве, данная топология вполне имеет право на практическое применение.

Альтернативой ККМ являются преобразователи, устроенные таким образом, что их входной ток приблизительно пропорционален входному напряжению. Из таких преобразователей наиболее подходящим для питания светодиодов, с точки зрения авторов, является вариант преобразователя без накопительного конденсатора на первичной стороне. На рисунке 7 представлена версия на основе обратноходового преобразователя.

Преобразователь работает в граничном режиме. Функцию накопительного конденсатора выполняют емкости на выходе преобразователя. Повышенные требования по току конденсаторов здесь окупаются простотой и низкой ценой, а наличие небольшой пульсации выходного напряжения на удвоенной частоте сети вполне допустимо при питании осветительного оборудования. Расчетная форма тока представлена на рис. 8. Теоретически коэффициент мощности такого преобразователя равен 0,99, при этом расчетный состав гармоник входного тока с большим запасом удовлетворяет требованиям класса С.

Специфика нагрузки при определяет специфические требования к выходной части преобразователей. В основном, по своим выходным параметрам источники питания для светодиодного освещения не должны сильно отличаться от стандартных коммерческих преобразователей. Отличительными чертами являются:

1. Не всегда требуется гальваническая развязка между входными и выходными цепями.

2. Появилась новая опция – dimming.

3. Поскольку светодиоды питаются током, а не напряжением, на рынке требуются преобразователи – источники тока. Источники напряжения также востребованы для питания устройств, содержащих несколько «гирлянд» со своими регуляторами.

4. Более мягкие требования к пульсациям выходного напряжения, особенно на высокой частоте.

Требования по пульсациям на удвоенной частоте сети определяются санитарными нормами СанПиН 2.2.1/2.1.1.1278‑03, устанавливающими для обширного класса помещений жилых и общественных зданий нормы на коэффициент пульсации освещенности в пределах 10…20%. При освещении помещений, для которых коэффициент пульсации освещенности не нормируется, следует помнить, что при питании светодиодов импульсным током их эффективность заметно снижается. В этом можно убедиться на простом примере. Для типового светодиода зависимость светового потока от тока имеет ярко выраженный логарифмический характер. В качестве примера рассмотрим типовую характеристику диода CLN6A (Рис. 9).

При питании светодиода током 600 мА световой поток больше потока при токе 300 мА приблизительно в 1,5 раза. Следовательно, при питании светодиода импульсным током со скважностью 0,5 и средним значением 300 мА световой поток будет составлять только 0,75 от величины потока при питании постоянным током с тем же средним значением. Это говорит о том, что пульсации напряжения на выходе должны быть в разумных пределах и не следует пытаться обойтись без конденсаторов при построении преобразователя напряжения, причем, принимая во внимание специфику нагрузки, а именно весьма высокую крутизну вольтамперной характеристики светодиодов в рабочей точке, емкость конденсаторов должна быть достаточно большой, чтобы удержать пульсацию выходного напряжения в разумных пределах. Если пульсации тока на частоте коммутации можно значительно уменьшить с помощью дросселя, включенного последовательно с нагрузкой, то на частоте сети требуемая величина дросселя может оказаться сравнимой с размерами преобразователя вместе с нагрузкой. Исходя из вышеизложенного, любому человеку, которого можно назвать разумным, ясно, что светодиоды следует соединять последовательно: во-первых, при последовательном соединении их дифференциальные сопротивления складываются, что облегчает требования к пульсациям выходного напряжения, во-вторых, при равной мощности нагрузки выходные конденсаторы намного эффективнее работают на высоких напряжениях – можно обойтись одним или двумя конденсаторами, в то время, как на низких напряжениях требуется целая батарея таких же по объему конденсаторов. Преимущества высокого выходного напряжения особенно заметны в преобразователях, в которых выходные конденсаторы несут большую токовую нагрузку

На основе топологии без накопительного конденсатора на первичной стороне в ЗАО «ММП-Ирбис» был разработан ряд источников питания для светодиодов с выходной мощностью до 100 Вт. На рис. 10 представлена осциллограмма входного тока источника с максимальной выходной мощностью 40 Вт (номинальный ток нагрузки 0,12 А), полученная при следующих условиях:

  • входное напряжение 220,6 В (действ.)
  • выходное напряжение 300 В
  • ток нагрузки 114 мА
  • входной ток 0,191 А (действ.)
  • потребляемая мощность 40 Вт.

Хотя форма входного тока заметно отличается от синусоидальной, относительная величина гармоник входного тока с большим запасом удовлетворяет нормам, установленным для осветительного оборудования (Рис. 11). Значение коэффициента мощности, полученное по результатам измерений, составляет 0,95; коэффициент полезного действия равен 85,5%.

Выводы

По совокупности требований по экономичности, долговечности, экологическим свойствам наиболее предпочтительными выглядят светильники на основе светодиодов. С учетом специфики применения, источники питания для светодиодного освещения должны удовлетворять определенным требованиям как по качеству входного тока, так и по выходным характеристикам. Кроме того, источники питания должны содержать минимальное количество электронных компонентов, чтобы сохранить стоимость светильника в разумных пределах. Топология обратноходового AC/DC преобразователя без накопительного конденсатора на первичной стороне удовлетворяет всем требованиям и выглядит оптимальной для построения светодиодных светильников с потребляемой мощностью до 100 Вт.

Светодиоды в целом, и, в частности, мощные (более 1 Вт) светодиоды очень чувствительны к различным внешним факторам, которые могут негативно сказаться на их сроке службы и качественных показателях. В настоящее время величины максимальных питающих токов для светодиодов имеют весьма ощутимые значения: до 1…1,5 и даже до 2 А по сравнению с 0,35 А, на которые чаще всего нормируются характеристики светодиода. Желание получить максимальный световой поток с одного полупроводникового излучателя ведет к увеличению тока, пропускаемого через него, что отражается на его тепловыделении, и вся конструкция (светодиод + светодиодная арматура) работает на грани перегрева кристалла. При этом к источнику питания предъявляются высокие требования по стабильности выходных характеристик, которые он должен обеспечить. Это является довольно проблематичным при использовании для питания источника напряжения. Во-первых, предварительное выравнивание тока в цепи светодиодов потребует, по крайней мере, дополнительного резистора, который будет ограничивать ток и в то же время рассеивать на себе дополнительную мощность. Во-вторых, любая осветительная установка работает в некотором диапазоне температур, часто довольно широком, а светодиод, обладая отрицательной зависимостью прямого падения напряжения от температуры кристалла — обычно на уровне -2…-4 мВ/°С, будет иметь плавающую рабочую точку. В-третьих, свой вклад будет вносить нестабильность выходных характеристик самого источника. Эти причины изрядно сократят жизнь современному источнику света, особенно в случае его работы на токах, близких к максимальным. Так, повышение напряжения на переходе всего на 0,1 В будет причиной изменения силы тока на 200 мА, что приведет к повышенному тепловыделению и может крайне негативно сказаться на работе светового прибора.

ВАХ на рисунке 1 показывает, насколько важно использование блока питания (БП) с регулированием по току, а не по напряжению. Повышение напряжения питания на светодиоде на 3% (0,1 В) приводит к росту тока в первом приближении на 20% (200 мА). Соответственно, на 40% растет потребляемая мощность и тепловая отдача, что неизбежно приведет к перегреву, деградации структуры кристалла и выходу из строя светодиода. При кратковременном сильном превышении питающего светодиод тока может начаться деградация кристалла диода, за которой также последует выход из строя.

Рис. 1.

Понижение напряжения на диоде также нежелательно, так как при его падении на 3% от номинального, что соответствуют падению тока на 200 мА, мы теряем более 50% светового потока, что видно из зависимости относительного потока светодиода от питающего тока (рис. 2).

Рис. 2.

Самым простым способом обеспечить необходимый ток питания светодиода является применение высокочастотных (десятки кГц) широтно-импульсных преобразователей (ШИМ), способных поддерживать необходимый средний ток в широком диапазоне мощностей подключенного оборудования. В обиходе светотехников и электриков такие БП часто называют светодиодными драйверами. Некоторые модели в выходной цепи преобразуют чистый ШИМ-сигнал (прямоугольные импульсы) в более сглаженную кривую, среднее значение которой находится на уровне желаемого среднего тока.

Высокая частота работы блока питания обусловлена, прежде всего, требованиями к отсутствию видимых пульсаций источников света. Особенностью конструкции ШИМ-схем является также то, что существует запас для понижения сетевого напряжения, при котором световой поток оборудования не снижается, но уменьшается частота пульсаций выходного сигнала, особенно сильно проявляющаяся при работе БП на нагрузках, близких к максимально допустимым. К примеру, блоки питания компании Inventronics могут работать в диапазоне действующих значений напряжения сети питания от 90 до 305 В, при этом частота пульсаций выходного сигнала все еще значительно превышает порог, при котором мигание светодиода может быть заметным, т.е. явление фликера (мигания источника света согласно ГОСТ 13109-97) сводится к нулю. Таким образом, ШИМ-блоки питания могут быть рекомендованы для использования в осветительном оборудовании на расстоянии от региональных центров на территории России, где напряжения в сети может быть ощутимо ниже стандартных (действующее значение напряжения в сети может падать до 150 В и менее в регионах, удаленных от крупных электростанций), а кратковременные перенапряжения, вызванные подключением мощных удаленных потребителей, могут достигать 260 В и более.

Другой особенностью использования БП с ШИМ является простота интеграции с управляемыми диммерами. При этом БП могут получать информацию о степени ослабления светового потока по каналам 1…10 В, DMX, DALI или другим протоколам. Также нельзя не упомянуть малые габаритные размеры ШИМ-блока питания, позволяющие минимизировать размеры корпуса ОП с интегрированным БП или упростить установку внешнего блока питания недалеко от светильника.

Есть и другой подход к исполнению блоков питания: для упрощения адаптации к существующим сетям, минимизации объема БП внутри светильников и организации низковольтной сети по принципам электробезопасности используются отдельный низковольтный источник напряжения (12 или 24 В) за пределами корпуса осветительного прибора (ОП) и малогабаритный ШИМ-преобразователь внутри светильника. Несмотря на кажущуюся простоту, при таком подходе можно столкнуться с рядом серьезных опасностей при монтаже. В частности, при ошибке в полярности подключения ШИМ-преобразователь сразу выходит из строя.

Очень важным параметром любого импульсного блока питания является величина гармонических и нелинейных искажений формы питающего напряжения, которые он создает в сети. Они отрицательно сказываются на проводке электросети и потребителях, подключенных к ней. Это влияние выражается не только в различных помехах, которые сказываются на чувствительных электроприборах, но также и в самой трехфазной сети, в нулевом проводнике которой могут протекать токи, превышающие токи в фазных проводниках. Причина состоит в том, что импульсный БП потребляет из сети мощность лишь на пиках питающего напряжения; потребляемый ток имеет форму небольшого импульса и содержит в себе широкий набор гармонических составляющих. В случае симметричной нагрузки в нулевом проводнике высшие гармоники тока компенсируют друг друга (сдвиг фаз относительно друг друга составляет 120°), но это не относится к высшим гармоникам, кратным трем, которые в нулевом проводнике окажутся сложенными.

Коэффициент мощности l — комплексный показатель искажения потребляемой из сети мощности, который учитывает не только сдвиг фазы, но и искажение формы потребляемого тока (наличие гармонических составляющих). ГОСТ Р 51317.3.2-2006 устанавливает нормы гармонических составляющих тока для ТС класса С (таблица 1).

Таблица 1. Нормы гармонических составляющих тока для ТС класса С

Порядок гармонической
составляющей, n
Максимальное допустимое значение гармонической составляющей тока, % основной гармонической составляющей потребляемого тока
2 2
3 30 l *
5 10
7 7
9 5
11≤n≤39 (только для нечетных гармонических составляющих) 3
* Коэффициент мощности цепи

При этом данные нормы устанавливаются для световых приборов с активной потребляемой мощностью более 25 Вт, однако следует полагать, что распространение энергоэффективных маломощных светодиодных светильников заставит существенно снизить эту планку или вовсе отменить ограничение.

Для минимизации вносимых в сеть искажений применяют устройства, компенсирующие вышеуказанные помехи и приближающие коэффициент мощности к единице. В то время как для приборов с фиксированной потребляемой мощностью применяют пассивные компенсационные конденсаторы (например, в ПРА для металл-галогенных или люминесцентных ламп), в импульсные БП интегрируют активные компенсационные устройства, максимально приближающие их характеристики к резистивным в широком диапазоне подключенных нагрузок.

Несоблюдение этих норм негативно сказывается как на качестве питающей электроэнергии, так и на работе устройств и состоянии инфраструктуры. Предприятия, превышающие эти нормы, облагаются штрафами и вынуждены устанавливать дополнительные конденсаторные установки. Однако потребление электрической энергии предприятием в большой степени прогнозируемо, что и позволяет обойтись пассивной коррекцией.

Блоки питания на ШИМ с компенсаторами вносят крайне малые искажения в сеть. Например, серия мощных БП EUC (рис. 3) от Inventronics обеспечивает значение коэффициента мощности в пределах 0,97…0,99.

Рис. 3.

КПД современных блоков питания с широтно-импульсными модуляторами достигает величины 92% и более, что немаловажно, т.к. затрачиваемая ими энергия уходит в нагрев. Соответственно, чем выше КПД, тем меньше требуется эффективная площадь рассеяния радиатора и, соответственно, тем меньше будут габариты и масса БП, за которыми, безусловно, следует снижение стоимости драйвера.

В настоящее время БП производятся с корпусами в различном исполнении: как для установки внутрь СП, встройки в мебель или размещения в помещениях, так и во влагозащищенных корпусах с различными показателями пылевлагозащиты (IP): от IP23, допустимых к установке в сухих помещениях, и IP54 для установки во влажных помещениях и под навесом, до влагозащищенных с корпусами IP67, подходящих для установки снаружи помещений. Малораспространенная группа БП с IP68 предназначена для установки в грунт без дополнительных корпусов.

Цветовые характеристики светодиода также могут отклоняться при изменении тока питания. Например, диаграмма зависимости цветовых координат от рабочего тока мощного светодиода Osram Dragon plus (рис. 4) показывает относительное смещение цветовых координат излучения.

Рис. 4.

В первую очередь это относится к световым приборам с возможностью управления и создания различных цветодинамических сцен. Так при использовании световым прибором большого диапазона рабочих токов цветовые координаты в пространстве могут смещаться на 0,01 единиц по оси x и на 0,015 единиц по оси y. Это смещение в холодном белом диапазоне может достигать несколько сотен Кельвин (до 700К). Но в повседневных применениях этот фактор практически не заметен. Влияние изменения величины питающего тока исчезает в случае питания светодиодов ШИМ-сигналом, а управление можно осуществлять изменением скважности сигнала.

Заключение

На рынке появился большой объем светодиодной продукции, оснащенной качественными БП и самыми различными видами оптики. Большая их часть производится с использованием мощных светодиодов. Ряд приборов ведущих мировых производителей можно уже считать проверенными временем, так как они не первый год успешно и безотказно работают на самых различных объектах в России и за рубежом.

Получение технической информации, заказ образцов, поставка — e-mail:


Неуклонная тенденция развития портативной электроники практически ежедневно заставляет рядового пользователя сталкиваться с зарядкой аккумуляторов своих мобильных устройств. Будь вы владельцем мобильного телефона, планшета, ноутбука или даже автомобиля, так или иначе вам неоднократно придётся столкнуться с зарядкой аккумуляторов этих устройств. На сегодняшний день рынок выбора зарядных устройств настолько обширен и велик, что в этом многообразии довольно тяжело сделать грамотный и правильный выбор зарядного устройства, подходящего к типу используемого аккумулятора. К тому же, сегодня существуют более 20-и типов аккумуляторов с различным химическим составом и основой. Каждый из них имеет свою специфику работы заряда и разряда. В силу экономической выгоды современное производство в этой сфере сейчас сконцентрировано преимущественно на выпуске свинцово-кислотных (гелевых) (Pb), никель – металл - гидридных (NiMH), никель – кадмиевых (NiCd) аккумуляторов и аккумуляторов на основе лития – литий-ионных (Li-ion) и литий-полимерных (Li-polymer). Последние из указанных, кстати, активно используются в питании портативных мобильных устройств. Главным образом литиевые аккумуляторы заслужили популярность за счёт применения относительно недорогих химических компонентов, большого количества циклов перезаряда (до 1000), высокой удельной энергии, низкой степени саморазряда, а так же способности удерживать ёмкость при отрицательных значениях температуры.

Электрическая схема зарядного устройства литиевых аккумуляторов, применяемых в мобильных гаджетах сводится к обеспечению их в процессе заряда постоянным напряжением, превышающим на 10 – 15 % номинальное. К примеру, если для питания мобильного телефона используется литий-ионная батарея на 3,7 В., то для её заряда необходим стабилизированный источник питания достаточной мощности для поддержания напряжения заряда не выше 4,2В – 5В. Именно поэтому большинство портативных зарядных устройств, идущих в комплекте с устройством, выпускают на номинальное напряжение 5В, обусловленное максимальным напряжением питания процессора и заряда батареи с учётом встроенного стабилизатора.

Конечно, не стоит забывать и о контроллере заряда, который берёт на себя основной алгоритм заряда батареи, а так же опрос её состояния. Современные литиевые аккумуляторы, выпускаемые для мобильных устройств с малыми токами потребления, уже идут со встроенным контроллером. Контроллер выполняет функцию ограничения тока заряда в зависимости от текущей ёмкости аккумулятора, отключает подачу напряжения устройству в случае критического разряда батареи, защищает батарею в случае короткого замыкания нагрузки (литиевые батареи очень чувствительны к большому току нагрузки и имеют свойство сильно нагреваться и даже взрываться). С целью унификации и взаимозаменяемости литий-ионных аккумуляторов ещё в 1997 году компании Duracell и Intel разработали управляющую шину опроса состояния контроллера, его работы и заряда с названием SMBus. Под эту шину были написаны драйвера и протоколы. Современные контроллеры и сейчас используют основы алгоритма заряда, прописанные этим протоколом. В плане технической реализации существует множество микросхем, способных реализовать контроль заряда литиевых аккумуляторов. Среди них выделяется серия MCP738xx, MAX1555 от MAXIM, STBC08 или STC4054 с уже встроенным защитным n-канальным MOSFET транзистором, резистором определения тока заряда и диапазоном напряжения питания контроллера от 4,25 до 6,5 Вольт. При этом у последних микросхем от STMicroelectronics значение напряжения заряда аккумулятора 4,2 В. имеет разброс всего +/- 1%, а зарядный ток может достигать 800 мА, что позволит реализовать зарядку аккумуляторов ёмкостью до 5000 мА/ч.


Рассматривая алгоритм заряда литий-ионных аккумуляторов стоит сказать, что это один из немногих типов, предусматривающих паспортную возможность зарядки током до 1С (100% ёмкости аккумулятора). Таким образом, аккумулятор ёмкостью в 3000 ма/ч может заряжаться током до 3А. Однако, частая зарядка большим «ударным» током хоть и существенно сократит её время, но в то же время довольно быстро снизит ёмкость аккумулятора и приведёт его в негодность. Из опыта проектирования электрических схем зарядных устройств скажем, что оптимальным значением зарядки литий-инного (полимерного) аккумулятора является значение 0,4С – 0,5С от его ёмкости.


Значение тока в 1С допускается лишь в момент начального заряда батареи, когда ёмкость аккумулятора достигает приблизительно 70% своей максимальной величины. Примером может стать работа зарядки смартфона или планшета, когда первоначальное восстановление ёмкости происходит за короткое время, а оставшиеся проценты набираются медленно.

На практике довольно часто случается эффект глубокого разряда литиевого аккумулятора, когда его напряжение опускается ниже 5% его ёмкости. В этом случае контроллер не в состоянии обеспечить достаточный пусковой ток для набора начальной ёмкости заряда. (Именно поэтому не рекомендуется разряжать такие аккумуляторы ниже 10%). Для решения таких ситуаций необходимо аккуратно разобрать аккумулятор и отключить встроенный контроллер заряда. Далее необходимо к выводам аккумулятора подсоединить внешний источник заряда, способный выдать ток не менее 0,4С ёмкости аккумулятора и напряжение не выше 4,3В (для аккумуляторов на 3,7В.). Электрическая схема зарядного устройства для начальной стадии зарядки таких аккумуляторов может примениться из примера ниже.


Данная схема состоит из стабилизатора тока в 1А. (задаётся резистором R5) на параметрическом стабилизаторе LM317D2T и импульсном регуляторе напряжения LM2576S-adj. Напряжение стабилизации, определяется обратной связью на 4-ю ногу стабилизатора напряжения, то есть соотношением сопротивлений R6 и R7, которыми на холостом ходу выставляется максимальное напряжение зарядки аккумулятора. Трансформатор должен на вторичной обмотке выдавать 4,2 – 5,2 В переменного напряжения. Тогда после стабилизации мы получим 4,2 – 5В постоянного напряжения, достаточного для заряда вышеупомянутого аккумулятора.


Никель – металл - гидридные аккумуляторы (NiMH) чаще всего можно встретить в исполнении корпусов стандартных батареек – это формфактор ААА (R03), АА (R6), D, С, 6F22 9В. Электрическая схема зарядного устройства для NiMH и NiCd аккумуляторов должна в себя включать нижеперечисленные функциональные возможности, связанные со спецификой алгоритма заряда этого типа аккумуляторов.

У различных аккумуляторов (даже с одинаковыми параметрами) со временем меняются химические и емкостные характеристики. В итоге возникает необходимость организовывать алгоритм заряда каждого экземпляра индивидуально, поскольку в процессе зарядки (особенно большими токами, что допускают никелевые аккумуляторы) избыточный перезаряд влияет на быстрый перегрев аккумулятора. Температура в процессе заряда выше 50 градусов из-за химически необратимых процессов распада никеля полностью погубит аккумулятор. Таким образом, электрическая схема зарядного устройства должна иметь функцию контроля температуры аккумулятора. Для увеличения срока службы и количества циклов перезаряда никелевого аккумулятора желательно каждую его банку разрядить до напряжения не ниже 0,9В. током порядка 0,3С от его ёмкости. К примеру, аккумулятор с 2500 – 2700 мА/ч. разрядить на активную нагрузку током в 1А. Так же зарядное устройство должно поддерживать зарядку с «тренировкой», когда в течении нескольких часов происходит циклический разряд до 0,9В с последующим зарядом током 0,3 – 0,4С. Исходя из практики таким образом можно оживить до 30% убитых никелевых аккумуляторов, причём никель-кадмиевые аккумуляторы «реанимации» поддаются гораздо охотнее. По времени заряда электрические схемы зарядных устройств могут делиться на «ускоренные» (ток заряда до 0,7С с временем полного заряда 2 – 2,5ч.), «средней длительности» (0,3 – 0,4С – заряд за 5 – 6ч.) и «классические» (ток 0,1С – время заряда 12 – 15ч.). Конструируя зарядное устройство для NiMH или NiCd аккумулятора, так же можно воспользоваться общепринятой формулой расчёта времени заряда в часах:

T = (E/I) ∙ 1.5

где Е – ёмкость аккумулятора, мА/ч.,
I – ток заряда, мА,
1,5 – коэффициент для компенсации КПД во момент зарядки.
К примеру, время заряда аккумулятора ёмкостью 1200 мА/ч. током 120 мА (0,1С) будет:
(1200/120)*1,5 = 15 часов.

Из опыта эксплуатации зарядных устройств для никелевых аккумуляторов стоит отметить, что чем ниже зарядный ток, тем больше циклов перезаряда перенесёт элемент. Паспортные циклы, как правило, производитель указывает при зарядке аккумулятора током 0,1С с наиболее длительным временем заряда. Степень заряженности банок зарядное устройство может определять через измерение внутреннего сопротивления за счёт разницы падения напряжения в момент заряда и разряда определённым током (метод ∆U).

Итак, учитывая всё вышеизложенное, одним из наиболее простых решений для самостоятельной сборки электрической схемы зарядного устройства и в то же время обладающей высокой эффективностью является схема Виталия Спорыша, описание которой без труда можно найти в сети.



Основными преимуществами данной схемы является возможность зарядки как одного, так и двух последовательно соединённых аккумуляторов, термоконтроль заряда цифровым термометром DS18B20, контроль и измерение тока в процессе заряда и разряда, автоотключение по завершению зарядки, возможность зарядки аккумулятора в «ускоренном» режиме. Кроме того, с помощью специально написанного программного обеспечения и дополнительной платы на микросхеме - преобразователе TTL уровней MAX232 возможен вариант контроля зарядки на ПК и дальнейшей её визуализации в виде графика. К недостаткам стоит отнести необходимость наличия независимого двухуровневого питания.

Аккумуляторы на основе свинца (Pb) довольно часто можно встретить в устройствах с большим потреблением тока: автомобилях, электромобилях, бесперебойниках, в качестве источников питания различного электроинструмента. Нет смысла перечислять их достоинства и недостатки, которые можно разыскать на многих сайтах на просторах сети. В процессе реализации электрической схемы зарядного устройства для таких аккумуляторов следует различать два режима зарядки: буферный и циклический.

Буферный режим зарядки предусматривает одновременное подключение к аккумулятору и зарядного устройства, и нагрузки. Такое подключение можно наблюдать в блоках бесперебойного питания, автомобилях, ветряных и солнечных энергосистемах. При этом, во время подзаряда устройство является ограничителем тока, а когда аккумулятор набирает свою ёмкость – переходит в режим ограничения напряжения для компенсации саморазряда. В этом режиме аккумулятор выступает в роли суперконденсатора. Циклический режим предусматривает отключение зарядного устройства по завершению зарядки и его повторное подключение в случае разряда батареи.

Схемных решений по зарядке данных аккумуляторов в Интернете достаточно много, поэтому рассмотрим некоторые из них. Для начинающего радиолюбителя для реализации простого зарядного устройства «на коленках» отлично подойдёт электрическая схема зарядного устройства на микросхеме L200C от STMicroelectronics. Микросхема представляет собой АНАЛОГОВЫЙ регулятор тока с возможностью стабилизации напряжения. Из всех преимуществ, которые имеет эта микросхема – это простота схемотехники. Пожалуй, на этом все плюсы и заканчиваются. Согласно даташиту на эту микросхему, максимальный ток заряда может достигать 2А, что теоретически позволит зарядить аккумулятор ёмкостью до 20 А/ч напряжением
(регулируемым) от 8 до 18В. Однако, как оказалось на практике, минусов у этой микросхемы гораздо больше, чем плюсов. Уже при зарядке 12 амперного cвинцово-гелевого SLA аккумулятора током 1,2А микросхема требует радиатор площадью не менее 600 кв. мм. Хорошо подходит радиатор с вентилятором от старого процессора. Согласно документации к микросхеме, к ней можно прикладывать напряжение до 40В. На самом деле, если подать по входу напряжение более 33В. – микросхема сгорает. Данное зарядное требует довольно мощный источник питания, способный выдать ток не менее 2А. Согласно приведённой схеме вторичная обмотка трансформатора должна выдавать не более 15 – 17В. переменного напряжения. Значение выходного напряжения, при котором зарядное устройство определяет, что аккумулятор набрал свою ёмкость, определяется значением Uref на 4-й ножке микросхемы и задаётся резистивным делителем R7 и R1. Сопротивления R2 – R6 создают обратную связь, определяя граничное значение зарядного тока аккумулятора.
Резистор R2 в то же время определяет его минимальное значение. При реализации устройства не стоит пренебрегать значением мощности сопротивлений обратной связи и лучше применять такие номиналы, какие указаны в схеме. Для реализации переключения зарядного тока лучшим вариантом станет применение релейного переключателя, к которому подключаются сопротивления R3 – R6. От использования низкоомного реостата лучше отказаться. Данное зарядное устройство способно заряжать аккумуляторы на свинцовой основе ёмкостью до 15 А/ч. при условии хорошего охлаждения микросхемы.


Существенно уменьшить габариты зарядки свинцовых аккумуляторов небольшой ёмкости (до 20 А/ч.) поможет электрическая схема зарядного устройства на импульсном 3А. стабилизаторе тока с регулировкой напряжения LM2576-ADJ.

Для зарядки свинцово-кислотных или гелевых аккумуляторных батарей ёмкостью до 80А/ч. (к примеру, автомобильных). Отлично подойдёт импульсная электрическая схема зарядного устройства универсального типа представленная ниже.


Схема была успешно реализована автором этой статьи в корпусе от компьютерного блока питания ATX. В основе её элементной базы лежат радиоэлементы, большей частью взятые из разобранного компьютерного блока питания. Зарядное устройство работает как стабилизатор тока до 8А. с регулируемым напряжением отсечки заряда. Переменное сопротивление R5 устанавливает значение максимального тока заряда, а резистор R31 устанавливает его граничное напряжение. В качестве датчика тока используется шунт на R33. Реле K1 необходимо для защиты устройства от изменения полярности подключения к клеммам аккумулятора. Импульсные трансформаторы T1 и Т21 в готовом виде были так же взяты из компьютерного блока питания. Работает электрическая схема зарядного устройства следующим образом:

1. включаем зарядное устройство с отключённой батареей (клеммы зарядки откинуты)

2. выставляем переменным сопротивлением R31(на фото верхнее) напряжение заряда. Для свинцового 12В. аккумулятора оно не должно превышать 13,8 – 14,0 В.

3. При правильном подключении зарядных клемм слышим, как щёлкает реле, и на нижнем индикаторе видим значение тока заряда, которое выставляем нижним переменным сопротивлением (R5 по схеме).

4. Алгоритм заряда спроектирован таким образом, что устройство заряжает аккумулятор постоянным заданным током. По мере накопления ёмкости значение зарядного тока стремится к минимальному значению, а «дозаряд» происходит за счёт выставленного ранее напряжения.

Полностью посаженый свинцовый аккумулятор не включит реле, как и собственно саму зарядку. Поэтому важно предусмотреть принудительную кнопку подачи мгновенного напряжения от внутреннего источника питания зарядного устройства на управляющую обмотку реле К1. При этом следует помнить, что в момент нажатой кнопки защита от переполюсовки будет отключена, поэтому нужно перед принудительным пуском обратить особое внимание на правильность подключения клемм зарядного устройства к аккумулятору. Как вариант, возможен запуск зарядки от заряженного аккумулятора, а уж потом перебрасываем клеммы зарядки на требуемый посаженный аккумулятор. Разработчика схемы можно найти под ником Falconist на различных радиоэлектронных форумах.

Для реализации индикатора напряжения и тока была применена схема на pic-контроллере PIC16F690 и «супердоступных деталях», прошивку и описание работы которой можно найти в сети.

Данная электрическая схема зарядного устройства, конечно же, не претендует на звание «эталонной», но она в полной мере способна заменить дорогостоящие зарядные устройства промышленного производства, а по функциональности может даже значительно превзойти многие из них. В окончании стоит сказать, что последняя схема универсального зарядного устройства рассчитана главным образом на человека, подготовленного в радиоконструировании. Если же вы только начинаете, то лучше в мощном зарядном устройстве применить гораздо более простые схемы на обычном мощном трансформаторе, тиристоре и системе его управления на нескольких транзисторах. Пример электрической схемы такого зарядного устройства приведён на фото ниже.

Смотрите также схемы.

 
Статьи по теме:
Русско-польский онлайн-переводчик и словарь Переводчик яндекс русско польский online
Очень часто новичкам, да и честно говоря профессионалам, приходится прибегать к услугам перевода . Конечно, новички это делают гораздо чаще, но и у более опытных носителей языка могут возникать некоторые проблемы. В этом случае не нужно обращаться в специ
Разбираемся в способах записи телефонных разговоров на устройстве Samsung
На смартфонах Android мы можем не только звонить родным и отправлять сообщения, но и использовать различные службы для видеосвязи, определения местоположения, автоматического обновления информации о погодных условиях, пробках в городской местности и т.д.
Clean master скачать версия 4
Последняя CM AppLock Clean Master apk Скачать. App Lock ★ Android 5.0 and 6.0 is supported★ Fingerprint lock password is supported on specific devices (see the description below)★ Snap the snooper who tried to unlock your apps★ Customized lock mode. CM Se
Лучшие iPad-приложения для работы с презентациями – Keynote, PowerPoint, HaikuDeck и другие
iPad уже давно перестал быть устройством для простого потребления контента. Большинство обладателей планшета от Apple используют его возможности по максимуму. Многие пишут статьи в Pages, кто-то использует iPad для решения рутинных бизнес-задач. Я вот, на