Вторая производная по x y. Частные производные и полный дифференциал

Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х 1 , х 2 … х n из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f(х 1 , х 2 … х n) многих переменных.

Х – обл-ть опред-я ф-ции

х 1 , х 2 … х n – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х 2 1 *х 2 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х 1 , х 2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х 0 , зн. пл-ть Х || 0уz у = у 0 0хz Вид ф-ции: Z=f(х 0 ,y); Z=f(x,у 0)

Например: Z=x 2 +y 2 -2y

Z= x 2 +(y-1) 2 -1 x=0 Z=(y-1) 2 -1 y=1 Z= x 2 -1 Z=0 x 2 +(y-1) 2 -1

Парабола окруж-ть(центр(0;1)

Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х 0 ,y 0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х 0 |<б; |y-y 0 |<б выполняется нерав-во |f(x,y)-A|

Z=f(х;у) непрерывна в т.(х 0 ,y 0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х 0 и у к у 0 ; - этот предел = знач-ю

ф-ции в т.(х 0 ,y 0), т.е. limf(х;у)=f(х 0 ,y 0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Дифференциал ф-ции, его геом смысл. Применение диф-ла в приближенных значениях.

dy=f’(x)∆x – диф-л ф-ции

dy=dx, т.е. dy=f ’(x)dx если у=х

С геом точки зрения диф-л ф-ции – это приращение ординаты касательной, проведенной к графику ф-ции в точке с абсциссой х 0

Диф-л применяют в вычислении приближ. значений ф-ции по формуле: f(х 0 +∆x)~f(х 0)+f’(х 0)∆x

Чем ближе ∆x к х, тем результат точнее

Частные производные первого и второго порядка

Производная первого порядка(которая называется частной)

О. Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х 0, у 0. Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y)



Аналогично определяется частная производная от переменной у, т.е.

Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.

Отличие состоит в том, что при дифференциации функции по переменной х, у считается const, а при дифференцировании по у, х считается const.

Изолированные const соединены с функцией операциями сложения/вычитания.

Связанные const соединены с функцией операциями умножения/деления.

Производная изолированной const = 0

1.4.Полный дифференциал функции 2-х переменных и его приложения

Пусть z = f(x,y), тогда

tz = - называется полным приращением

Частная производная 2-го порядка

Для непрерывных функций 2-х переменных смешанные частные производные 2-го порядка и совпадают.

Применение частных производных к определению частных производных max и min функций называются экстремумами.

О. Точки называются max или min z = f(x,y), если существуют некоторые отрезки такие, что для всех x и y из этой окрестности f(x,y)

Т. Если задана точка экстремума функции 2-х переменных, то значение частных производных в этой точке равны 0, т.е. ,

Точки , в которых частные производные первого порядка называются стационарными или критическими.

Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.

Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,

1) , причем maxA<0, minA>0.

1.4.(*)Полный дифференциал. Геометрический смысл дифференциала. Приложение дифференциала в приближенных вычислениях

О. Пусть функция y = f(x) определена в некоторой окрестности в точки . Функция f(x) называется дифференцируемой в точке , если ее приращение в этой точке , где представлено в виде (1)

Где А – постоянная величина, не зависящая от , при фиксированной точке х, - бесконечно малая при . Линейная относительно функция А называется дифференциалом функции f(x) в точке и обозначается df() или dy.

Таким образом, выражение (1) можно записать в виде ().

Дифференциал функции в выражении (1) имеет вид dy = A . Как и всякая линейная функция, он определен для любого значений в то время, как приращение функции необходимо рассматривать только для таких , для которых + принадлежит области определения функции f(x).

Для удобства записи дифференциала приращение обозначают dx и называют его дифференциалом независимой переменной x. Поэтому дифференциал записывают в виде dy = Adx.

Если функция f(x) дифференцируема в каждой точке некоторого интервала, то ее дифференциал является функцией двух переменных – точки x и переменной dx:

Т. Для того, чтобы функция y = g(x) была дифференцируема в некоторой точке , необходимо и достаточно, чтобы она имела в этой точке производную, при этом

(*)Доказательство. Необходимость.

Пусть функция f(x) дифференцируема в точке , т.е. . Тогда

Поэтому производная f’() существует и равна А. Отсюда dy = f’()dx

Достаточность.

Пусть существует производная f’(), т.е. = f’(). Тогда кривую y = f(x) отрезком касательной. Для вычисления значения функции в точке х берут в некоторой ее окрестности точку , такую, что не составляет труда найти f() и f’()/

Продолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных : первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Как найти производную? Во-вторых, очень важно прочитать статью и осмыслить-прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то уверенной походкой идём со мной, будет интересно, даже удовольствие получите!

Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных. Функция двух переменных, напоминаю, имеет вид , где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных представляет собой некоторую поверхность в нашем трёхмерном пространстве.

Функция трёх переменных имеет вид , при этом переменные называютсянезависимыми переменными или аргументами , переменная называется зависимой переменной или функцией . Например: – функция трёх переменных

А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь или нет?
Ведь функция трёх переменных подразумевает тот факт, что все дела происходят в четырехмерном пространстве (действительно, переменных же четыре). График функции трёх переменных представляет собой так называемую гиперповерхность . Представить её невозможно, поскольку мы живём в трехмерном пространстве (длина/ширина/высота). Чтобы вам со мной не было скучно, предлагаю викторину. Я задам несколько вопросов, а желающие могут попробовать на них ответить:

– Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

– Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

– Возможно ли путешествие в прошлое?

– Возможно ли путешествие в будущее?

– Существуют ли инопланетяне?

На любой вопрос можно выбрать один из четырёх ответов:
Да / Нет (наукой это запрещено) / Наукой это не запрещено / Не знаю

Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью;-)

Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры!

Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных . Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного!

Пример 1

Решение: Нетрудно догадаться –для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом:

Или – частная производная по «икс»;
или – частная производная по «игрек»;
или – частная производная по «зет».

В ходу больше обозначение со штрихом, но составители сборников, методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби». Пример: следует читать следующим образом: «дэ у по дэ икс».

Начнём с производной по «икс»: . Когда мы находим частную производную по , то переменныеи считаются константами (постоянными числами). А производная любой константы, о, благодать, равна нулю:

Сразу обратите внимание на подстрочный индекс – никто вам не запрещает помечать, что являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться.

(1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом константу выносить не нужно: так как «игрек» является константой, то – тоже константа. В слагаемом за знак производной вынесена «обычная» константа 8 и константа «зет».

(2) Находим простейшие производные, не забывая при этом, что – константы. Далее причесываем ответ.

Частная производная . Когда мы находим частную производную по «игрек», то переменныеи считаются константами:

(1) Используем свойства линейности. И снова заметьте, что слагаемые , являются константами, а значит, за знак производной выносить ничего не нужно.

(2) Находим производные, не забывая, что константы. Далее упрощаем ответ.

И, наконец, частная производная . Когда мы находим частную производную по «зет», то переменныеи считаются константами:

Общее правило очевидно и незатейливо: Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами.

При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ. Хммм…. забавно, если после такого устрашения я их сам где-нибудь их пропущу)

Пример 2

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно.

Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

Верный ответ: Наукой это не запрещено . Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств, сознание способны на восприятие и осмысление только трёх измерений.

Вернемся к примерам. Да, если кто сильно загрузился викториной, ответы на следующие вопросы лучше прочитать после того, как научитесь находить частные производные функции трёх переменных, а то я вам по ходу статьи вынесу весь мозг =)

Помимо простейших Примеров 1,2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Такие примеры, к моей досаде, выпали из поля зрения, когда я создавал урок Частные производные функции двух переменных . Навёрстываем упущенное:

Пример 3


Решение: вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться.

Разберём пример последовательно, чётко и понятно.

Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные считаются константами. Следовательно, показатель нашей функции – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной:
или ещё можно записать так:

Это степенная функция со сложным основанием (синусом). По :

Теперь вспоминаем, что , таким образом:

На чистовике, конечно, решение следует оформить так:

Находим частную производную по «игрек», считаются константами. Если «икс» константа, то – тоже константа. На черновике проделываем тот же трюк: заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной:

Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции :

Теперь вспоминаем нашу замену:

Таким образом:

На чистовике, понятно, оформление должно выглядеть, благообразно:

И зеркальный случай с частной производной по «зет» ( – константы):

При определенном опыте проведенный анализ можно проводить мысленно.

Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле:

В данном случае:

И делов то. Отмечу, что в практических задачах полный дифференциал 1-го порядка функции трёх переменных требуют составить значительно реже, чем для функции двух переменных.

Забавный пример для самостоятельного решения:

Пример 4

Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка

Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный совет – не спешите . Такие примеры быстро не решаю даже я.

Отвлекаемся и разбираем второй вопрос: Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

Верный ответ: Да . Причём, очень легко. Например, добавляем к длине/ширине/высоте четвёртое измерение – время. Популярное четырехмерное пространство-время и всем известная теория относительности, аккуратно украденная Эйнштейном у Лобачевского, Пуанкаре, Лоренца и Минковского. Тоже не все знают. За что у Эйнштейна Нобелевская премия? В научном мире был страшный скандал, и Нобелевский комитет сформулировал заслугу плагиатора примерно следующим образом: «За общий вклад в развитие физики». Так то оно. Бренд троечника Эйнштейна – чистая раскрутка и пиар.

К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, так далее, так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве.

Разберём еще пару типовых задач:

Пример 5

Найти частные производные первого порядка в точке

Решение: Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий:
– нужно найти частные производные первого порядка;
– нужно вычислить значения частных производных 1-го порядка в точке .

Решаем:

(1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса . По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения): .

(2) Используем свойства линейности.

(3) И берём оставшиеся производные, не забывая, что – константы.

По условию задания необходимо найти значение найденной частной производной в точке . Подставим координаты точки в найденную производную:

Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме:

Как видите, шаблон решения практически такой же.

Вычислим значение найденной частной производной в точке :

И, наконец, производная по «зет»:

Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке . Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке.

Интересно отметить, что геометрически точка – вполне реальная точка нашего трехмерного пространства. Значения же функции , производных – уже четвертое измерение, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял.

Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое?

Верный ответ: Нет . Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи =) Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Хотя, на самом деле грустная штука, время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину. .

Интереснее с производной по «зет», хотя, всё равно почти то же самое:

(1) Выносим константы за знак производной.

(2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще таки пойти другим путём – найти производную от произведения.

(3) Производная – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции.

Пример 9

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока.

Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, всех еще раз взбодрю четвертым вопросом:

Возможно ли путешествие в будущее?

Верный ответ: Наукой это не запрещено . Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались мне невероятной фантастикой.

Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя.

Пусть задана функция двух переменных. Дадим аргументу приращение, а аргумент оставим неизменным. Тогда функция получит приращение, которое называется частным приращением по переменной и обозначается:

Аналогично, фиксируя аргумент и придавая аргументу прираще-ние, получим частное приращение функции по переменной:

Величина называется полным прира-щениием функции в точке.

Определение 4. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует). Обозначается частная производная так: или, или.

Таким образом, по определению имеем:

Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной, считается постоянной, а при дифференцировании по переменной постоянной считается.

Пример 3. Найти частные производные функций:

Решение. а) Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной:

Аналогично, считая постоянной величиной, находим:

Определение 5. Полным дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.

Учитывая, что дифференциалы независимых переменных совпадают с их приращениями, т.е. , формулу полного дифференциала можно записать в виде

Пример 4. Найти полный дифференциал функции.

Решение. Так как, то по формуле полного дифференциала находим

Частные производные высших порядков

Частные производные и называют частными производными первого порядка или первыми частными производными.

Определение 6. Частными производными второго порядка функции называются частные производные от частных производных первого порядка.

Частных производных второго порядка четыре. Они обозначаются следующим образом:

Аналогично определяются частные производные 3-го, 4-го и более высоких порядков. Например, для функции имеем:

Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными. Для функции таковыми являются производные. Заметим, что в случае, когда смешанные производные непрерывны, то имеет место равенство.

Пример 5. Найти частные производные второго порядка функции

Решение. Частные производные первого порядка для данной функции найдены в примере 3:

Дифференцируя и по переменным х и y, получим

И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.

Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.

Функция двух и более переменных

Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной:

Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.

А что, если добавить еще одну переменную? Получится такая функция:

Это – функция двух независимых переменных x и y . График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:

Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.

Частная производная первого порядка

Запоминаем главное правило:

При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.

То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных . Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:

Сначала возьмем частную производную по иксу, считая игрек обычным числом:

Теперь считаем частную производную по игреку, принимая икс за константу:

Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.

Частная производная второго порядка

Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.

По игреку:

Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:

  1. При дифференцировании по одной независимой переменной, вторая принимается за константу.
  2. Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.

Частные производные и полный дифференциал функции

Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.

Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:

Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.

Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.

Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!

Пусть задана функция . Так как x и y – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной x приращение , сохраняя значение y неизменным. Тогда z получит приращение, которое называется частным приращением z по x и обозначается . Итак, .

Аналогично получаем частное приращение z по y: .

Полное приращение функции z определяется равенством .

Если существует предел , то он называется частной производной функции в точке по переменной x и обозначается одним из символов:

.

Частные производные по x в точке обычно обозначают символами .

Аналогично определяется и обозначается частная производная от по переменной y:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находится по формулам и правилам вычисления производных функции одной переменной (при этом соответственно x или y считаются постоянной величиной).

Частные производные и называют частными производными первого порядка. Их можно рассматривать как функции от . Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

; ;

; .


Дифференциалы 1 и 2 порядка функции двух переменных.

Полный дифференциал функции (формула 2.5) называют дифференциалом первого порядка.

Формула для вычисления полного дифференциала имеет следующий вид:

(2.5) или , где ,

частные дифференциалы функции .

Пусть функция имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле . Найдем его:


Отсюда: . Символически это записывается так:

.


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

Первообразная функции, неопределенный интеграл, свойства.

Функция F(x) называется первообразной для данной функ­ции f{x), если F"(x)=f(x), или, что то же, если dF(x)=f(x)dx.

Теорема. Если функция f(x), определенная в некотором промежутке (X) конечной или бесконечной длины, имеет одну первообразную, F(x), то она имеет и бесконечно много первообразных; все они содержатся в выра­жении F(x)+С, где С - произвольная постоянная.

Совокупность всех первообразных для данной функции f(x), определенной в некотором промежутке или на некотором отрезке конечной или бесконечной длины, называется неопределенным интегралом от функ­ции f(x) [или от выражения f(x)dx ] и обозначается символом .



Если F(x) есть одна из первообразных для f(x), то согласно теореме о первообразных

, где С есть произвольная постоянная.

По определению первообразной F"(x)=f(x) и, следовательно, dF(x)=f(x) dx. В формуле (7.1), f(x) называется подинтегральной функцией, а f(x) dx - подинтегральным выражением.

 
Статьи по теме:
Руководство запуска террария по сети
Последнее изменение: Хотите исследовать 2D миры в приключенческой игре Terraria? Тут мы опишем как поиграть в неё по сети с друзьями и совсем не обязательно покупать игру. Скачаем для начала эту версию игры - 1.2.4.1 (версия 1.2.4.1, торрент) Пос
Не запускается Don't Starve?
Если вы столкнулись с тем, что Don"t Starve Together тормозит, вылетает, Don"t Starve Together не запускается, Don"t Starve Together не устанавливается, в Don"t Starve Together не работает управление, нет звука, выскакивают ошибки, в Don"t Starve Together
The Crew не запускается: решение проблемы Ошибка 0 1 the crew решение
Выход The Crew ознаменовался не только возможностью погонять на спортивных авто с игроками со всего мира, но и кучей багов и ошибок, которые устраняли разработчики довольно медленно. У многих даже не запускается The Crew Uplay-версия, которая работать дол
Купить M46 Patton KR (премиум танк): обзор (гайд), характеристики, зоны пробития
Для начала немного интересной информации о самом танке M46 Patton KR. Буквы KR в конце означают Корея, именно там танк воевал и там получил эту привлекательную окраску, привлекающую внимание абсолютно всех игроков на поле. В период с 25 января 9:00 (МСК)